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Abstract. We study the effects of layer thickness variations on the collective plasmon excitation modes
of finite superlattices. Unlike other symmetry lowering mechanisms, thickness variation does not strongly
localize the surface modes. We find that the reason for this insensitivity lies in the fact that the collec-
tive modes of a given finite structure must evolve continuously from the single-finite-superlattice at zero
thickness deviation into modes of a pair of uncoupled finite structures at large thickness variation. We
also show that this behavior is analogous to the evolution of molecular orbitals from atomic orbitals as
the internuclear separation is reduced, in contrast to the analogy of the superlattice modes as a stack of
coupled quantum wells. This emphasizes the difference between the electromagnetic symmetry of the finite
superlattice and the structural symmetry.

PACS. 73.21.-b Electron states and collective excitations in multilayers, quantum wells, mesoscopic,
and nanoscale systems – 73.21.Cd Superlattices

1 Introduction

Superlattices, or artificially layered structures, have been
the focus of much attention for nearly three decades. Many
theoretical and experimental studies have been done, on
a range of different phenomena, often focusing on the be-
havior of collective effects. Such work includes studies of
magnons [1–4], phonons [5–8], polaritons [9–11], and plas-
mons [12–17,21,22]. In particular, surface waves, i.e. col-
lective excitations of the finite or semi-infinite superlattice
which are localized to the outer boundaries, show many
unique and interesting properties. In semi-infinite struc-
tures, the existence of the surface wave depends upon the
ratio of layer thickness within a unit cell [16]. In addition,
in finite structures, the surface waves may be dramati-
cally localized to a single surface by small perturbations
of system parameters, or the surface waves may be non-
reciprocal, i.e. the frequency (energy) of the mode may
depend upon the propagation direction [10,23].

It is reasonable to ask about the effect of thickness vari-
ation on the collective plasma oscillations of the structure,
since real structures will contain some thickness variation.
Interestingly, it has been demonstrated that perturbations
in the thickness of the constituent layers of the super-
lattice have little effect on the collective plasmon surface
waves in finite structures [24]. This result is surprising
for two reasons. The tremendous sensitivity of the surface
modes to the overall symmetry, as demonstrated by previ-
ous work regarding the effects of dielectric perturbations,
would lead one to inquire about the lowering of the pe-
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riodic symmetry of the structure via thickness variation.
In addition, work on coupled quantum wells indicates that
the electronic wave function of the overall structure is dra-
matically localized by thickness variation [17].

In this paper, we study the reasons for the insensi-
tivity of the modes to thickness variation, the interesting
effects of coupling finite superlattices, and investigate an
interesting parallel between the problem of coupled finite
superlattices and the evolution of separate atomic orbitals
into molecular orbitals. This is the principal insight of the
paper – that the thickness perturbation must be viewed
as part of the evolution of a larger system, in contrast to
the symmetry-lowering of a single structure; the single-
structure arguments work well for symmetries based upon
the electromagnetic properties of the system, but must
be abandoned for this structural perturbation. In partic-
ular, we find that the dispersion relations (the allowed
plasmon frequencies as a function of wavevector) of finite
superlattices with a thickness variation in one layer are
insensitive to small variations because the modes must
evolve continuously into those of two uncoupled struc-
tures when the thickness variation gets very large. The
parallels to the molecular orbital case (as opposed to the
single-structure coupled quantum wells case) are as fol-
lows: the allowed plasmon frequencies for two identical
finite superlattices split when the two superlattices are
coupled, in analogy with the splitting of atomic orbital
energies when the atoms are coupled. The splitting of the
plasmon frequencies is roughly inversely proportional to
the separation. Furthermore, the potential profiles of the
split plasmon modes assume an odd-even parity, similar
to “bonding/anti-bonding” pairs in the molecular orbital
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case. We demonstrate these effects for two identical finite
superlattices as well as for small “split-off” structures.

In order to isolate the effects of the symmetry-lowering,
we study plasmons in the long-wavelength, quasi-static
approximation, using simple model dielectric functions,
and ignore the effects of retardation and higher order
many-body correlations. Although these effects are impor-
tant [14,15,18–20], our results are based upon the overall
symmetry of the collective superlattice modes composed
of long-wavelength static surface modes supported by the
individual free-charge layers. An isolated slab will sup-
port both bulk and surface excitations; however, by keep-
ing only the static approximation (i.e. Laplace’s equation)
and not enforcing conditions on the dielectric function (i.e.
looking for the dielectric function to vanish as functions of
retardation or correlation parameters), we have a simple
and plausible system for which the structural symmetry
effects may be elucidated. The structure of the the sim-
ple plasmons studied here is well-known: the bulk modes
are in two bands, an acoustic branch with linear disper-
sion at small wavenumber and an optical branch which ap-
proaches the plasma frequency at small wavenumber, with
surface modes at particular energies that depend upon the
layer thicknesses. It can be shown [16] that the surface
modes do not exist when the free-charge layer thickness
is less than the dielectric layer thickness. In addition, the
effect of correlations (as well as tunneling) between ac-
tive layers becomes important when the spacer layer be-
comes thin (with respect to the Wigner-Seitz radius), and
gaps will appear in the plasmon spectrum [14,18]. In ad-
dition, retardation effects will produce shear modes [15] in
the low-frequency dispersion, and the retardation and the
correlations both provide a general broadening of mode
frequencies of the spectral features. In this paper, we will
restrict the analysis to layer thicknesses where the surface
modes always exist, and where the interlayer coupling may
be treated via simple classical Coulomb coupling; finally,
in the interest of clarity, we will ignore damping and any
retardation.

The remainder of this paper is organized as follows.
In Section 2 we present the method used for finding the
implicit dispersion relation for the finite superlattice. In
Section 3 we present some numerical examples of the pre-
vious theory, showing the dispersion curves for a finite
superlattice and the potential profiles of some of the ex-
isting modes. In Section 4 we explore perturbations in
layer thickness, creating coupled finite superlattices, and
consider the comparison with atomic-to-molecular orbital
evolution. Finally, in Section 5 we summarize our results.

2 Theory

This section will lay the theoretical development for cal-
culating the plasmon dispersion for the superlattice, as
well as the method for calculating the electrostatic po-
tential of the plasmon modes as a function of depth in
structure. We will write out the potential in each region
of the superlattice explicitly in order to have the ability
to create thickness variations between layers. The use of
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Fig. 1. Physical picture of the superlattice with alternating
materials A and B of thicknesses d1 and d2, respectively. The
z-axis is oriented normal to all the interfaces and the x-axis
parallel.

other methods, i.e. the finite-structure dispersion defined
by Johnson et al. [17] would not leave us this freedom.
Consider the superlattice to be a finite number N of alter-
nating layers of materials A and B surrounded by vacuum.
Take layers A to have a dielectric constant εA(ω) and lay-
ers B to have εB(ω). To begin with, all material A layers
will be of thickness d1 and all the B layers d2. Later in
the paper this condition will be relaxed, and the effect of
thickness deviations on the allowed modes will be studied
in detail. We orient the superlattice with the z-axis nor-
mal to the interfaces and the x-axis parallel to the same
(see Fig. 1).

We consider collective electromagnetic excitations of
the superlattice which generate a macroscopic electric
field. These are coupled excitations of the individual lay-
ers; a time-varying electric field in one layer couples to
the charges in adjacent layers via the Coulomb interac-
tion. The fields can be described via a scalar potential in
the long-wavelength quasi-static approximation (wherein
the curl of the electric field vanishes). The scalar potential,
φ(x, t), must obey Laplace’s equation

∇2φ(x, t) = 0 (1)

everywhere inside and outside the superlattice. The po-
tential will have some translationally invariant profile Φ(z)
and some wave vector k, defined along the x-axis (with no
loss of generality). The potential then has the form

φ(x, t) = Φ(z)ei(kx−ω t). (2)

Applying equation (1) yields[
d2

dz2
− k2

]
Φ(z) = 0 (3)

with the general solution being decaying exponentials
from the outside boundaries of the superlattice and
linear combinations of increasing and decreasing exponen-
tials within the layers, i.e.

Φ(z) = A0ekz ; z < 0; (4)
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while within the superlattice layers,

Φ(z) = A2i−1ekz +A2ie−kz (5)

where A2i−1 and A2i designate the ith layer’s coefficients.
Finally, below the superlattice, represented as the N + 1
layer,

Φ(z) = A2N+1e−kz ; z >
N

2
(d1 + d2). (6)

Next we require that Φ(z) be continuous at each interface
along with the normal component of the displacement field
Dz = ε(ω)dΦ

dz . For the continuity of Φ(z),

A0 = A1 +A2 (7)

A1ekd1 +A2e−kd1 = A3 +A4 (8)

A3ekd2 +A4e−kd2 = A5 +A6 (9)

and so on, until the boundary after the Nth layer gives

A2N−1ekd2 +A2N e−kd2 = A2N+1. (10)

For the continuity of the normal component of the dis-
placement, with vacuum outside (εoutside = 1),

A0 = εA(ω)A1 − εA(ω)A2 (11)

εA(ω)A1ekd1 − εA(ω)A2e−kd1 = εB(ω)A3 − εB(ω)A4

(12)

εB(ω)A3ekd2 − εB(ω)A4e−kd2 = εA(ω)A5 − εA(ω)A6

(13)

and so on, until

εB(ω)A2N−1ekd2 − εB(ω)A2N e−kd2 = −A2N+1. (14)

The result is a set of 2N + 2 equations which describe
the unknown amplitudes. We translate these into matrix
form and then require the determinant of the coefficient
matrix to vanish, providing an implicit dispersion relation.

To find the potentials, we substitute the (k, ω) which
satisfies the dispersion, and solve for the coefficients A0

through A2N+1.

3 Numerical examples of dispersion relations

This section will be devoted to numerical examples for
the dispersion relations discussed in the previous sec-
tion, along with several illustrative examples of the po-
tential as a function of depth into the material. The pre-
vious relations describe collective excitations which may
arise by any number of mechanisms. All we require is the
frequency-dependent dielectric constants of the materials
involved. We will study an example of metal slabs sepa-
rated by fixed dielectric layers and, as before, the entire su-
perlattice surrounded by vacuum. The metal (material A)

is assumed to have εA(ω) = 1− ω2
p

ω2 , with ωp = 15 eV (ap-
propriate for Al [27]). Initially we take the fixed dielectric
layers (material B) to be vacuum (εB = 1).
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Fig. 2. Dispersion curves for a superlattice (N = 40) consist-
ing of films of aluminum separated by vacuum. The plot gives
frequency ω vs. wavenumber kd1, with kd2 = 0.5kd1.

Fixing the thicknesses of the layers to be d1 = 2d2 = 1,
the wavevectors can be swept, finding all corresponding
εA(ω) values which satisfy the dispersion relation. These
values can then be translated into ω using the equation
for εA(ω).

Figure 2 shows the dispersion curves for a superlattice
consisting of 20 layers of aluminum separated by vacuum
(N = 40). They are given as plots of frequency ω vs.
wavenumber kd1. For each wavelength, there are 40 cor-
responding frequency modes possible, two for each active
(frequency-dependent) layer present in the superlattice.
Three distinct mode groupings are apparent. This is all
consistent with previous work done on finite superlattices.
The boundaries of these groupings are consistent with
those found for semi-infinite superlattices with the same
parameters [16]. In essence, the finite case has merely bro-
ken up the continuous band of states found in the semi-
infinite case into discrete modes.

Each of the modes has a unique electric potential pro-
file Φ(z), which contains the signature characteristics of
its group. We take A0 to be unity and pairs of known kd1

and ω which satisfy the dispersion relation. With these,
we can calculate the rest of the coefficients Ai in terms of
A0 and then calculate particular Φ(z).

In Figure 3, plots (a) and (b) show electrostatic po-
tential Φ(z) vs. depth into the structure for the surface
modes of a superlattice consisting of aluminum active lay-
ers separated by vacuum spacers (kd1 = 2kd2 = 1). Plot
(a) shows the odd surface mode (ω = 10.6067) and (b)
the even surface mode (ω = 10.6065). These modes local-
ize on the two outer boundaries of the superlattice and
are labeled according to their symmetry, one odd and one
even. For large kd1 they have frequencies that are nearly
independent of wavelength, as seen in Figure 2. For long
wavelengths (small k) the two modes split apart and the
odd surface mode merges with the high-energy bulk band
and the even with the low-energy bulk band.

All the modes are, in fact, made up of combinations
of single-film-contained surface modes. If one reduces the
superlattice to a single film, two modes exist, both being
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Fig. 3. Plots (a) and (b) show electrostatic potential Φ(z) vs.
depth into the structure for a superlattice consisting of alu-
minum films separated and surrounded by vacuum (kd1 = 1.0,
kd2 = 0.5kd1). Plot (a) shows the odd surface mode (ω =
10.6067 eV) and plot (b) the even (ω = 10.6065 eV). Plot (c)
shows the only even surface mode (ω = 10.6065 eV) of the
same superlattice with a perturbation of the spacer dielectric
to εB = 1.01. The odd surface mode (not shown) localizes to
the other surface.

surface modes since there are no bulk interfaces (and we
have explicitly ignored bulk excitations of the individual
films). With each frequency-dependent layer added, a pair
of high and low energy bulk modes form.

4 Perturbations in layer thickness

4.1 Discussion

In general, the surface modes of a finite superlattice are ex-
tremely sensitive to changes in the symmetry of the struc-
ture [17]. The greater the number of constituents in the
superlattice, the greater the sensitivity [17]. For instance,
if the dielectric εB is changed even by one percent for the

superlattice in the previous example, the surface modes
dramatically localize their electric potential to one sur-
face of the superlattice. This is a symmetry perturbation
since, due to the bi-layer structure, an active layer couples
to vacuum on one side while a spacer couples on the other.
In Figure 3, plot (c) shows the electrostatic potential vs.
depth for the even surface mode of a superlattice com-
posed of aluminum active layers separated by perturbed
spacers (εB = 1.01, kd1 = 2kd2 = 1, ω = 10.6065 eV,
N = 40). Notice the large localization of electric potential
without a noticeable change in energy. The odd-symmetry
surface mode also localizes, but on the the opposite surface
(for brevity, only one of the localized modes is shown in
the figure). The bulk modes are insensitive to the offset in
the spacer dielectric. In the semi-infinite case, the surface
modes show sensitivity by only existing when d2 < d1 [16].

One might assume that a perturbation of one layer’s
thickness would cause the same localization of the sur-
face waves within a finite superlattice. This would follow
from the known sensitivity of the surface modes of a fi-
nite superlattice to the overall structure symmetry and the
sensitivity of electron wavefunctions for a set of coupled
quantum wells to well-thickness variation [26]. However,
for our situation, the analogy does not apply. For layer
expansions of either material, no substantial changes in
any of the potential profiles are seen until the offsets are
very large.

The reason that thickness variations have little affect
on the plasmons stems from the fact that, in the absence of
other perturbations, the system must evolve continuously
into two uncoupled superlattices in the same symmetry
environment as the original structure. These uncoupled
structures must obey the same high symmetry require-
ments as any isolated structure; therefore, any coupling
between the two can only influence the internal structure
of the collective modes rather than the global symmetry.
Demonstrating this is the main result of this paper.

We note that the difference between this plasmon evo-
lution and that of the electron wavefunction of a set of
coupled quantum wells is due to the manner in which the
excitations of the individual components of the structure
combine to form the collective excitation. The plasmon
modes arise from the coupling of surface waves at the
boundaries of the individual films. Even the “bulk” ex-
citations are composed of surface waves in the individ-
ual layers. The collective electron wavefunctions for a set
of coupled quantum wells arise from the coupling of the
wavefunctions for the individual wells. Each of these is an
excitation localized near the center of the well. Therefore,
though the two cases seem synonymous, the perturba-
tions in well thickness and active-layer thickness are not.
The increase in an individual quantum well’s thickness
increases the size of the region in which the overall wave-
function may localize. The increase in active-layer thick-
ness merely loosens the coupling between surface waves
existing on nearby interfaces. We also note that variations
in the thicknesses of the inactive layers of the superlattice
and the barriers separating the quantum wells result in
completely analogous evolutions.
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Fig. 4. The physical picture of the superlattice with aluminum
active layers (εA) separated by vacuum spacers with one layer
perturbed to a thickness d′2.

By perturbing a particular material B layer, we effec-
tively create two finite superlattices, separated by a region
of εB, in the case of the spacer layer expansion, and of εA,
in the case of the active layer expansion. Figure 4 shows
the physical picture of a spacer layer perturbation, the
thickness of that layer changing to d′2. With d′2 = d2, the
superlattices couple “perfectly”. As the thickness offset is
increased, they begin to behave more and more like two
separate superlattices. This is the evolution mentioned
earlier. Each superlattice has the same electrostatic po-
tential modes as it would if it were uncoupled, with slight
coupling effects from the other superlattice. Thus, how
many modes exist in each of the now two superlattices
depends upon where the original superlattice was split.

4.2 Dispersions, potential profiles, and “anti-crossings”

The following is a description of numerical dispersion ex-
amples followed by a discussion of their qualities. Figure 5
shows plots of dispersion curves (ω vs. k) for thickness per-
turbations. Plots (a) and (b) show dispersions for expan-
sions of the second and tenth, respectively, material B lay-
ers from the outside boundary of the superlattice. These
correspond to the 4th and 20th layers, with an active layer
being counted as the “1st” layer. The superlattices have
parameters N = 40, kd1 = 2kd2, kd′2 = 5kd1, with alu-
minum active layers separated by vacuum. Plot (c) shows
the dispersion for a superlattice with the third active layer
from the outside boundary expanded to 5kd1. This corre-
sponds to the 5th layer, with an active layer being counted
as the “1st” layer. Once again, the superlattice has param-
eters N = 40, kd1 = 2kd2, with aluminum active layers
separated by vacuum.

In Figure 5, we effectively plotted dispersion curves
for systems of superlattices which consisted of two super-
lattices separated by vacuum, in plots (a) and (b), and
by εA, in plot (c). In plot (a), one superlattice, the “split-
off”, was an N = 4 superlattice, with two metal layers.
The other, the “main”, was an N = 36 superlattice, with
18 metal layers. If the two were completely uncoupled, i.e.
at very large separation, then the split-off would have two
surface modes and two bulk modes, one high and one low
energy. The main structure would have two surface modes
and 34 bulk modes, 17 high and 17 low energy. When
coupled, the structures maintain the same numbers and
types of modes. This is why in the dispersion of the sys-
tem has the effect of superimposing the two superlattices’
dispersions on top of one another. It is still true that there
are no intersections between any of the modes, thus, there
are still 40 unique excitation frequencies for every possible
wavelength.

Plots (b) and (c) of Figure 5 show similar characteris-
tics. Plot (c), however, has a slightly different division of
the plasmon modes. Since the perturbation is of an active
(metal) layer, the system consists of two superlattices cou-
pling via that active layer. Thus, the uncoupled equivalent
is two superlattices with metallic semi-infinite substrates.
With the third active layer expanded (and vacuum spac-
ers), the two superlattices are an N = 4 and an N = 34.
Each will have the usual numbers of modes, with an ad-
ditional mode contributed by the active substrate.

The active layer perturbation has an additional effect
of localizing the surface modes of the uncoupled super-
lattices. This is in the same fashion as the spacer layer
dielectric perturbation discussed earlier. The bulk modes
will remain fairly unaffected, and will look the same as
the bulk modes in spacer-layer-perturbed systems.

If we look carefully at the dispersion curves shown in
Figure 5, plot (a), it almost appears as if the split-off sur-
face mode dispersion curves cross or touch the surrounding
bulk modes on their way to merging with the main super-
lattice’s surface modes at short wavelengths (see arrows
on plot). This is actually an interesting point in the dis-
persion. It is more apparent in Figure 6 which shows the
dispersions (ω vs. k) for two completely uncoupled super-
lattices, one an N = 4 and one an N = 36, superimposed
on one another. Both superlattices are assumed to have
kd2 = 0.5kd1 and be composed of aluminum active layers
separated by vacuum. The dotted lines are the dispersion
curves for the N = 36 superlattice and the solid lines
are for the N = 4. We can see that the dispersion curves
actually cross one another in the completely uncoupled
system.

These crossings are four “anti-crossings” in the coupled
system which occur at two values of kd1, roughly kd1 =
0.07 and kd1 = 0.517. The dispersion curves approach
one another, but do not cross. However, the electrostatic
potentials associated with the modes switch. By this we
mean that at wavelengths longer than that of the anti-
crossing value the potentials behave in one manner, and
for wavelengths shorter they behave another. This is quite
interesting since in no other situation has there been any
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Fig. 5. Dispersion plots of frequency ω vs. wavenumber kd1.
All plots have parameters kd2 = 0.5kd1, εB = 1, and N = 40.
Plots (a) and (b) show the dispersion curves for superlattices
with their second and tenth, respectively, material B layers
perturbed in thickness to 5kd1. The arrows in plot (a) accent
the anti-crossings in the dispersion. Plot (c) shows the disper-
sion for a superlattice with its third active layer perturbed in
thickness to 5kd1.

significant change in a particular potential profile with a
change in wavelength.

Figure 7 shows potential profiles at two different kd1

values for the even split-off surface mode and the neigh-
boring low-energy bulk mode. Plots (a) and (b) show the
two modes at kd1 = 0.7, with ω = 8.491 eV and ω =
8.885 eV, respectively. Following the dispersion curves

0

5

10

15

0.5 1 1.5 2

F
re

qu
en

cy
 (

eV
)

Wavenumber (kd1)

Fig. 6. Dispersion curves for uncoupled N = 4 (solid lines)
and N = 36 (dashed lines) superlattices superimposed on one
another. Both superlattices consist of aluminum active lay-
ers separated and surrounded by vacuum, with kd2 = 0.5kd1.
The four arrows point to the four crossings that become anti-
crossings when when the superlattices are coupled.

down to kd1 = 0.4, plots (c) and (d) show the two modes
in the same order, with ω = 7.564 eV and ω = 7.952 eV,
respectively. We can see that the mode in plot (a) is a
fairly well-defined low-energy bulk mode at kd1 = 0.7.
However, at kd1 = 0.4, below the anti-crossing, this mode
behaves like a surface mode in the separated superlattice
(plot (c)). The same switch takes place between the pairs
of modes involved in the other anti-crossings.

It is less obvious, but the same anti-crossing behavior
appears in plot (c) of Figure 5. Once again this is merely
due to the affect of superimposing the uncoupled disper-
sions on top of one another. As the separate superlattices
begin to couple, the points where their uncoupled disper-
sions would cross become the anti-crossings. In fact, the
only situation in which the anti-crossings do not occur is
the case of two identical superlattices coupling. They may
couple via vacuum as shown in plot (b) of Figure 5, or via
an active region. In either case, the uncoupled dispersions
are exactly the same and therefore as the superlattices
couple slightly, the modes merely split into parallel pairs,
never crossing.

4.3 Atomic-to-molecular analogy

An interesting comparison arises between the interaction
of two finite superlattices and two atoms. As the superlat-
tices approach one another, the electromagnetic coupling
effects cause changes in the frequencies of the plasmon
excitation modes. In the example of two identical super-
lattices, the pairs of like plasmon excitation energies split.
This is analogous to two identical atoms splitting their de-
generate energy levels as they couple due to wavefunction
overlap. We note that a similar analogy is often made
between the coupling of like atoms and the coupling of
electron wavefunctions for identical quantum wells.

We saw in Figure 5, plot (b), the plasmon dispersion
for two identical coupled superlattices containing 20 lay-
ers, 10 of aluminum and 10 vacuum, with kd1 = 2kd2 and
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Fig. 7. Plots of electric potential vs. depth into the superlattice
at two different kd1 values for the even split-off surface mode
and the neighboring low-energy bulk mode. Plots (a) and (b)
show the two modes at kd1 = 0.7, with ω = 8.491 eV and
ω = 8.885 eV, respectively. Following the dispersion curves
down to kd1 = 0.4, plots (c) and (d) show the two modes in the
same order, with ω = 7.564 eV and ω = 7.952 eV, respectively.

kd′2 = 5kd1. At this separation distance, we can see the
splitting of the dispersion curves in pairs. As the separa-
tion becomes smaller, the curves smoothly approach those
shown for the original, unperturbed superlattice.

Figure 8 shows a plot of frequency (ω) vs. separation
distance (kd′2) between the two identical superlattices. kd1

is fixed at 2.0, kd2 = 0.5kd1, εB = 1, and kd′2 values are
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Fig. 8. Plot of frequency ω vs. separation kd′2 (in units of kd1)
between two identical superlattices. The superlattices are as-
sumed to be kd1 = 2.0, kd2 = 0.5kd1, N = 20, with aluminum
active layers and vacuum spacers. For each kd′2 value, the fre-
quencies of the odd and even surface modes (4) are calculated
along with the frequencies of the two pairs of neighboring bulk
modes (2 high and 2 low energy).

swept through in units of kd1. For each kd′2 value, the
frequencies of the even and odd surface modes, the two
neighboring high-energy bulk modes, and the two neigh-
boring low-energy bulk modes are plotted. At a large sepa-
ration, the surface modes and the two pairs of bulk modes
are nearly degenerate.

As the superlattices approach one another the electro-
magnetic coupling increases, causing the potential profiles
of the plasmon modes to assume odd-even parities. This
is similar to bonding/anti-bonding pairs in the molecular
orbital case.

Notice that one even and one odd surface mode dra-
matically change their energy as the separation decreases,
the even merging with the low-energy bulk band and the
odd with the high-energy bulk band. The other surface
modes remain at the same (or nearly the same) energy.
Similar, but less dramatic, behavior appears in the bulk
mode pairs, with one staying fairly constant and the other
changing.

4.4 Dual perturbations

It is interesting to study the effects of combined pertur-
bations. With the layer thickness perturbation in place,
we can add in the spacer dielectric perturbation. Fig-
ure 9 shows the surface modes of the coupled split-off
(N = 4) and main (N = 36) superlattices with kd1 = 2.0,
kd′2 = 5kd1, kd2 = 0.5kd1, and a perturbed spacer dielec-
tric of εB = 1.01. Plot (a) shows the even split-off surface
mode (ω = 10.350 eV). Plot (b) shows the even main
surface mode (ω = 10.580 eV). Plot (c) shows the odd
main surface mode (ω = 10.583 eV). Plot (d) shows the
odd split-off surface mode (ω = 10.829 eV). The surface
modes of the main localize just as they would if the two
superlattices were uncoupled. The split-off surface modes
are insensitive to the perturbation since their potentials
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Fig. 9. Layer thickness and spacer dielectric perturbation
plots of electrostatic potential vs. depth into the superlattice
(kd1 = 2.0, kd2 = 0.5kd1, kd′2 = 5kd1, εB = 1.01, and N = 40,
with the second material B layer expanded). Plot (a) shows an
even split-off surface mode (ω = 10.350 eV). Plot (b) shows
a localized even main surface mode (ω = 10.580 eV). Plot (c)
shows a localized odd main surface mode (ω = 10.583 eV).
Plot (d) shows an odd split-off surface mode (ω = 10.829 eV).

drop off well before the interface on the opposing side of
the perturbed layer.

5 Summary

In this paper we presented a study of plasmon excitations
within a finite superlattice, including the effects of thick-

ness variation. Numerical examples were given, showing
dispersion curves for a superlattice made up of 20 layers
of aluminum alternating with 20 layers vacuum. We chose
particular modes from the dispersion to display the differ-
ent potential profile characteristics possible within a finite
superlattice. With this existing knowledge, our goal was
then to explore the effects of thickness variations on the
plasmon modes of the superlattice.

As mentioned above, the surface plasmon modes are
very sensitive to the value of the dielectric constant of the
static layers (i.e. to the overall symmetry of the structure),
while at the same time the surface modes are nearly in-
sensitive to variations in the thickness of layers within the
superlattice. The overall structure of the plasmon modes
is insensitive to deviations in the thicknesses of either the
free-charge carrying layers or the dielectric spacer layers,
in contrast to the case of electrons in quantum wells, where
the wavefunction morphology depends upon whether the
thickness of the well or the barrier is changed. The analogy
between the quantum wells and the superlattice is strict
if only barrier thickness deviations are considered.

When the thickness variation becomes very large, the
system evolves smoothly into that of two uncoupled super-
lattices. This behavior is similar to that of the wavefunc-
tions for atomic orbitals as two distant atoms are brought
together. The introduction of long-range coupling splits
the degenerate energy levels (with the magnitude of the
splitting dependent upon the inter-nuclear distance), and
the wavefunctions evolve into molecular orbitals. In the
present case, the dispersions show splitting inversely pro-
portional to the layer-thickness variation, and the poten-
tials evolve into superlattice modes.

This work was supported by an award from the Research
Cooporation, and by the BFR at WWU support for under-
graduate research.
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